Crystallization and preliminary X-ray analysis of pig E3, lipoamide dehydrogenase

Tomohiko Toyoda, a Ryuichi Kobayashi, b Takeshi Sekiguchi, b Kichiko Koike, c Masaiko Koike c and Akio Takenaka a*

at aDepartment of Life Science, Faculty of Bioscience and Biotechnology, Tokyo Institute of Technology, Midori-ku, Yokohama 226, Japan, bDepartment of Fundamental Science, Faculty of Science and Technology, Iwaki Meisei University, Iwaki, Fukushima 970, Japan, and cDepartment of Pathological Biochemistry, Atomic Disease Institute, Nagasaki University School of Medicine, Sakamoto-machi, Nagasaki 852, Japan. E-mail: atakenak@bio.titech.ac.jp

(Received 4 August 1997; accepted 6 January 1998)

Abstract

Pig heart lipoamide dehydrogenase was crystallized by the hanging-drop vapor-diffusion method. X-ray diffraction patterns show that the hexagonal crystals have unit-cell dimensions of \(a = b = 359.3 \), \(c = 140.5 \) Å. The crystal structure has been preliminarily solved by the molecular-replacement method in the space group \(P6_322 \). Three dimeric molecules have been found in the asymmetric unit, one of them located on the crystallographic twofold axis.

1. Introduction

Pig heart lipoamide dehydrogenase is a dimeric enzyme composed of two identical subunits with molecular weight of 50 141 for 474 amino-acid residues (Otulakowski & Robinson, 1987). This protein is known as the E3 component of the pyruvate (PDC), 2-oxoglutarate (OGDC) and branched-chain 2-oxoacid (BCODC) dehydrogenase multi-enzymatic complexes (Reed, 1974; Mattevi et al., 1992; Perham, 1991; Mattevi, Obmolova et al., 1992). The architecture of the complexes is composed of multiple copies of, in general, E1, E2 and E3. The former two enzymes, E1 and E2, are substrate specific. For example, in PDC E1 and E2 are pyruvate dehydrogenase and dihydrolipoamide acetyltransferase, respectively, and in OGDC E1 and E2 are 2-oxoglutarate dehydrogenase and dihydrolipoamide succinyltransferase, likewise. A common component among them is E3, which catalyzes the oxidation of dihydrolipoic acid covalently bound to the lysine residue of E2 in the last step (1) of the overall reaction.

\[
E2 - \text{Lip(SH)}_2 + \text{NAD}^+ \rightarrow E2 - \text{LipS}_2 + \text{NADH} + \text{H}^+. \tag{1}
\]

The E2 components form the structural core of the complex. OGDC in all organisms and PDC in Gram-negative bacteria have a similar core with 24 copies of E2 packed with 432 symmetry. While the cores of PDC in Gram-positive bacteria and eukaryotes exhibit a symmetry of 532 containing 60 copies of E2. It is interesting that in the latter organisms, E3 is assembled into both cores with 532 and 432 symmetries to form the complex. More strictly speaking, protein X (De Marcucci & Lindsay, 1985) may be required for binding with E3 in the icosahedral cores of yeast PDC (Lawson et al., 1991) and mammalian PDC (Neagle & Lindsay, 1991). Even among eukaryotes, the number of E3’s in PDC differs between yeast and mammals, 12 copies in yeast PDC (Maeng et al., 1994) and six copies in mammalian PDC (Wu & Reed, 1984) are identified. Furthermore, the primary structures of E3s from various sources have been reported. However, a few tertiary structures from prokaryotes have been reported (Mattevi et al., 1991, 1993; Mattevi, Obmolova et al., 1992). To elucidate the evolutionary relationship of the architecture among them, it is essential to reveal the structures in different organisms. It is known that mutations of E3 cause human diseases, such as neurological dysfunctions and lactic acidosis (Liu et al., 1993).

Fig. 1. Crystals of pig E3, lipoamide dehydrogenase obtained under conditions given in Table 1. The hexagonal crystal (a) has a size of \(0.2 \times 0.2 \times 0.05 \) mm and the needle crystals (b) have a size of \(0.5 \times 0.05 \times 0.05 \) mm.
Table 1. Crystallization conditions of pig lipoamide dehydrogenase

<table>
<thead>
<tr>
<th></th>
<th>Hexagonal crystal</th>
<th>Needle crystal</th>
</tr>
</thead>
<tbody>
<tr>
<td>Drop (5 μl)</td>
<td>50 mM potassium phosphate (pH 7.0)</td>
<td>50 mM potassium phosphate (pH 7.0)</td>
</tr>
<tr>
<td>Buffer solution</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Protein (mg ml⁻¹)</td>
<td>6.6</td>
<td>9.1</td>
</tr>
<tr>
<td>FAD (mm)</td>
<td>0.25</td>
<td>0.10</td>
</tr>
<tr>
<td>Ammonium sulfate (M)</td>
<td>0.75</td>
<td>1.0</td>
</tr>
<tr>
<td>Isopropanol [% (v/v)]</td>
<td>--</td>
<td>2.5</td>
</tr>
<tr>
<td>Reservoir (1 ml)</td>
<td>50 mM potassium phosphate (pH 7.0)</td>
<td>50 mM potassium phosphate (pH 7.0)</td>
</tr>
<tr>
<td>Buffer solution</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ammonium sulfate (M)</td>
<td>1.5</td>
<td>2.0</td>
</tr>
<tr>
<td>Isopropanol [% (v/v)]</td>
<td>--</td>
<td>5</td>
</tr>
</tbody>
</table>

Fig. 2. (a) $|F_o| - |F_c|$ maps around five FAD binding sites, calculated without FAD. Electron densities are drawn at 2.5σ contour level (i–iii), and at 2.0σ level (iv, v). (b) An $|F_o| - |F_c|$ map of a lower half of the unit cell. Electron densities are drawn at 2.5σ contour level. All molecules in the region are drawn with Cα model.
As pig E3 has high sequence identity (96%) with human E3, an achievement of the present X-ray analysis of pig E3 will give some structural basis for cause of the deficiencies. In this paper, we describe the crystallization and preliminary structure determination of pig heart E3, which is the first example of a mammalian lipoamide dehydrogenase.

2. Materials and methods

Pig E3, isolated from fresh pig heart (Moriyasu et al., 1986), was further purified by hydroxyapatite column chromatography and nickel-chelating Sepharose FF chromatography. Crystallization conditions were surveyed by the hanging-drop vapour-diffusion method, the microdialysis method and the free-interface diffusion method (Ducruix & Giegé, 1992) with ammonium sulfate or polyethylene glycol as precipitants using 50 mM potassium phosphate buffer (pH 7.0). In some cases, isopropanol was added to control nucleation or to prevent aggregation of crystals.

X-ray diffraction data of the hexagonal crystal were collected with synchrotron radiation (λ = 1.04 Å) at the Photon Factory in Tsukuba using the Weissenberg camera for macromolecules (Sakabe, 1991). The intensities recorded on imaging plates (Fuji Film) were digitalized with a Fuji Film BA100. 14 frames with 6° oscillations during 80 s exposure were processed by the program DENZO (Otwinowski, 1993). The reflection data obtained from different frames were scaled in one data set by the program SCALA in CCP4 (Collaborative Computational Project Number 4, 1994).

3. Results and discussion

Two kinds of crystals which were different in shape, as seen in Fig. 1, were obtained by the hanging-drop vapor-diffusion method. Their crystallization conditions are given in Table 1. As the needle-shaped crystals were too small for X-ray work, only the hexagonal crystal 0.2 × 0.2 × 0.05 mm in size was used to collect X-ray data. The crystal gave diffraction at 5.5 Å resolution, and has the Laue symmetry 6mm with unit-cell dimensions a = b = 359.3 and c = 140.5 Å. The space group was determined to be P6322 (n = 0-5), because of lacking (00l) reflections. From 13 615 observed reflections in a range of 50-8.0 Å resolution data (Briinger, 1992b). Fig. 2(a) shows |Fo| – |Fc| difference maps around the five FAD binding sites postulated from the other E3 structures. Electron densities for FAD’s clearly appear in all the five FAD binding sites despite the fact that they were omitted in structure-factor calculations.

The dimers are reasonably packed in the unit cell. There are no abnormal molecular contacts among them. The Vm value is calculated to be 5.71 Å³Da⁻¹, corresponding to a solvent content of 78.5%. This value is out of the range reported by Matthews (1968) and beyond even the highest value of 75% found in the crystal of glycolate oxidase (Lindqvist & Brändén, 1980). Therefore, it might suggest the presence of other subunits in the asymmetric unit. In fact there are two large spaces found in the unit cell. One is around the β3 screwed axis and the other is in the upper/lower half space around the threefold axis. It may be possible to put a dimer on the twofold axes across these β3 screw and/or threefold axes. It is, however, difficult to find the corresponding densities in these regions of the |Fo| – |Fc| difference map, as seen in Fig. 2(b). Higher resolution data will resolve this ambiguity. We are further surveying crystallization conditions to obtain crystals that diffract at much higher resolution.

We are grateful to N. Sakabe and N. Watanabe for facilities and help during data collection at the Photon Factory (Tsukuba). This work was supported in part by Grants-in-Aid for Scientific Research on Priority Areas (No. 08214203, 07230224 and 07250205) from the Ministry of Education, Science, Sport and Culture of Japan, and by the Sakabe project of TARA (Tsukuba Advanced Research Alliance), University of Tsukuba, Japan.

References

